Система контроля доступа - автономный контроллер

Назначение

Автономное управления доступом в помещения и управления замками, используя в качестве ключа бесконтактные радиочастотные (PROXIMITY) карты 125кГц стандарта EM-Marin.

Технические характеристики

Энергонезависимая память на 170 пользователей

Два считывателя бесконтактных карт

Два выхода реле для управления замками

Программируемое время открытия 0,1-25 секунд с шагом 0,1 сек.

Световая и звуковая сигнализация

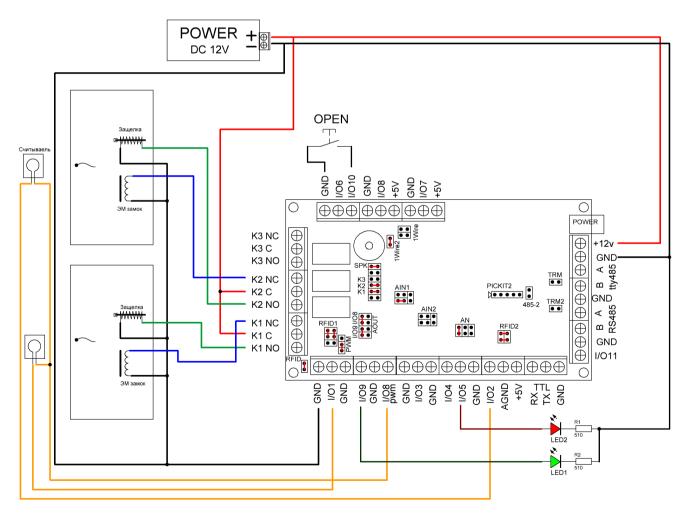
Кнопка открытия дверей

Политика прав доступа для каждого пользователя

Автономное программирование

Символьный дисплей и кнопки управления

Напряжение питания - 12 вольт 150мА.


Интерфейс дистанционного управления и получения отчетов - MODBUS RTU RS485

Открытый исходный код и свободное программное обеспечение на языке PICµBASIC

Легкая настройка и возможность модификации под собственные нужды.

Аппаратная платформа - ПРОГРАММИРУЕМЫЙ МОДУЛЬ РАСШИРЕНИЯ DEVICE PICµBASIC LOGIC CONTROLLER http://moycontroller.ru/products/programmiruemyj-modul-rasshireniya-basic

Схема подключения

Установленные перемычки показаны красным цветом

Функционирование

Контроллер реализует функцию управления электромеханическим, электромагнитным, ригельным замком, электрозащелкой. Под конкретную дверь подбирается оптимальный замок. Для принудительного закрытия двери может использоваться доводчик двери. Позволяет обслуживать один или два прохода.

Рабочий режим

В рабочем режиме контроллер опрашивает считыватели. При опознавании карты производится проверка по внутренней базе ключей и прав доступа этой карты при совпадении.

Для каждой карты доступа можно устанавливать следующие привилегии:

- опознается в 1 считывателе
- опознается во 2 считывателе
- опознается в обеих считывателях

При опознании в 1 считывателе

- открыть первую дверь
- открыть вторую дверь
- открыть обе двери
- нет действий

При опознании в 2 считывателе

- открыть первую дверь
- открыть вторую дверь
- открыть обе двери
- нет действий

При опознании карточки звучит короткий сигнал высокого тона

При поднесении чужой карточки звучит длинный сигнал низкого тона

При открытии двери зажигается зеленый светодиод и звучит серия звуковых сигналов до закрытия.

Звуковое подтверждение можно отключить.

При нажатии кнопки открываются обе двери.

На дисплее отображается состояние контроллера:

Готов - в режиме ожидания

Код ключа при опознании, действие контроллера – открыть/ не открывать дверь, время открытия.

Режим программирования

Автономное программирование

Вход в меню - нажать любую кнопку - на дисплее общее количество ключей, затее переход в меню программирования

Пункты меню

Добавить ключ

Удалить ключ

Просмотр ключей

Установка времени открытия

Удаление всех ключей

Выход из режима программирования

Перезагрузка контроллера

Навигация по меню - кнопки влево/ вправо вверх/вниз. Выбор пункта меню - кнопка ОК

Если нет активности - через 10 секунд контроллер автоматически вернется в рабочий режим

Добавление ключа

На дисплее приглашение поднести ключ к считывателю для добавления в базу, номер ячейки для записи, права пользователя. Время ожидания до выхода из меню – 20 секунд

Права пользователя - по умолчанию все разрешено = 63. Права описываются суммой цифр

- 1 разрешен первый считыватель
- 2 разрешен второй считыватель
- 4 открыть первую дверь для первого считывателя
- 8 открыть вторую дверь для первого считывателя
- 16 открыть первую дверь для второго считывателя
- 32 открыть вторую дверь для второго считывателя

Редактирование прав

В режиме добавления ключа

Кнопка влево перебирает права считывателя

Кнопка вправо перебирает права открытия двери от первого считывателя

Кнопка вверх перебирает права открытия двери от второго считывателя

Кнопка вниз - выход из редактирования прав.

Кнопка ОК выход из режима добавления ключей

После добавления ключа происходит возврат на добавление следующего ключа, с ранее установленными правами.

Возможные ошибки добавления отображаются на индикаторе

- Такой ключ уже есть
- Нет места в памяти

Удаление ключей

При вхоже в режим - на индикаторе отображение ожидания ключа, который нужно удалить.

При поднесении ключа он будет удален и контроллер вернется в меню на пункт удаления.

Время ожидания ключа на удаление до выхода из режима программирования -20 секунд

Выход из режима удаления - любая кнопка.

Возможные ошибки удаления отображаются на индикаторе

- Такого ключа нет в базе

Просмотр ключей

На индикаторе номер ключа, его код, права доступа

Просмотр следующего ключа - любая кнопка.

Возможные ошибки добавления отображаются на индикаторе

- Больше нет ключей для просмотра, при нажатии кнопки - вернется в меню

Время ожидания до автоматического выхода из меню не более 20 секунд.

Установка времени открытия

На индикаторе отображается текущее время открытия

Кнопки влево и вправо уменьшают /увеличивают время с шагом 0,1 сек

Кнопки вверх и виниз уменьшают /увеличивают время с шагом 1 сек

Кнопка ОК подтверждает значение, записывает в память и выход в меню

Время ожидания до автоматического выхода из меню не более 20 секунд, при этом значения не записываются

Удаление всех ключей

При нажатии кнопки ОК выдается приглашение «Вы уверены?»

Нажатие кнопки ОК удалит все ключи

Нажатие любой другой или автоматический выход по времени ожидания ключи не удаляет.

Перезагрузка

При выборе этого пункта и нажатии кнопки ОК контроллер будет перезагружен.

Выход из меню

Кнопка ОК возвращает в рабочий режим.

Дистанционное управление и данные для отчета

Дистанционное управление и получение состояния для отчетов выполняется через интерфейс RS485 по протоколу MODBUS RTU.

Диапазон адресов - 1-127

Адрес по умолчанию = 16

Контроллер поддерживает следующие стандартные функции протокола MODBUS RTU:

3 (0x03) — чтение значений из одного или нескольких регистров хранения (Read Holding Registers).

Запрос состоит из адреса первого элемента таблицы, значение которого требуется прочитать, и количества считываемых элементов. Адрес и количество данных задаются 16-битными числами, старший байт каждого из них передается первым.

В ответе передаются запрошенные данные. Количество байт данных зависит от количества запрошенных элементов. Перед данными передается один байт, значение которого равно количеству байт данных.

Формат пакетов MODBUS

Запрос

- 1 байт Адрес устройства
- 2 байт Функция 0х03
- 3 байт Адрес первой ячейки(параметра) (HIGH)
- 4 байт Адрес первой ячейки(параметра) (LOW)
- 5 байт Число ячеек(HIGH)
- 6 байт Число ячеек(LOW)
- 7 байт CRC (LOW)
- 8 байт CRC (HIGH)

Ответ

- 1 байт Адрес устройства
- 2 байт Функция 0х03
- 3 байт Счетчик байт данных

```
4 байт - Данные(addr) singed (HIGH)
5 байт - Данные(addr) singed (LOW)
--/ *+1 байт --/ Данные(addr+1) singed (HIGH)
--/ *+2 байт --/ Данные(addr+1) singed (LOW)
7/n-1 байт - CRC (LOW)
8/n байт - CRC (HIGH)
Поддерживается только чтение/запись одной ячейки за один цикл обмена
        16 (0x10) — запись значений в несколько регистров хранения (Preset Multiple Registers)
Запрос
1 байт - Адрес устройства
2 байт – Функция 0х10
3 байт - Адрес первой ячейки(параметра) (HIGH)
4 байт - Адрес первой ячейки(параметра) (LOW)
5 байт - Число ячеек (параметра) (HIGH)
6 байт - Число ячеек (параметра) (LOW)
7 байт - Счетчик байт данных
8 байт - Данные(addr) singed (HIGH)
9 байт - Данные(addr) singed (LOW)
--/ *+1 байт --/ Данные(addr+1) singed (HIGH)
--/ *+2 байт --/ Данныe(addr+1) singed (LOW)
7/n-1 байт - CRC (LOW)
8/n байт - CRC (HIGH)
Ответ
1 байт - Адрес устройства
2 байт - Функция 0х06
3 байт - Адрес первой ячейки(параметра) (HIGH)
4 байт - Адрес первой ячейки(параметра) (LOW)
5 байт - Число ячеек (параметра) (HIGH)
6 байт - Число ячеек (параметра) (LOW)
7 байт - CRC (LOW)
8 байт - CRC (HIGH)
Поддерживается только чтение/запись одной ячейки за один цикл обмена
        17 (0х11) — Чтение информации об устройстве (Report Slave ID)
Пример
-> ADR, 0x11, CRC_L, CRC_H
<- ARD, 0x11, кол-во байт, text- xx BYTES, CRC L, CRC H
Запрос
1 байт - Адрес устройства
2 байт – Функция 0х11
3 байт - CRC (LOW)
4 байт - CRC (HIGH)
OTRET
1 байт – Адрес устройства
2 байт - Функция 0х11
3 байт - Счетчик байт данных
4 байт и далее - Данные TEXT max 64 bute
/n-1 байт - CRC (LOW)
/n байт - CRC (HIGH)
```

Физический интерфейс - RS485 115200 8N1

CRC-16 - циклически избыточный код - полином A001h

Временные диаграммы

Обработка запросов с функциями **3 (0х03), 16 (0х10), 17 (0х11)** всегда выполняется в фонововом режиме, независимо от программы в контроллрере. Одновременно может выполняться только один запрос. Минимальное время тишины 1,5 ms. Минимальное время до начала ответа – 0mS, типичное 1mS, максимальное 200 mS (если контроллер занят функциями работы с другими критичными во времени интерфейсами). Время ожидания ответа мастером до ошибки таймаута - 500 mS.

Номера адресов ячеек и их значение

Структура данных и алгоритм приема команд от MODBUS MASTER

```
СТРУКТУРА 8 байт - команды / запросы от мастера - #(ххх) - адрес ячейки
#(976) - код запроса команды
#(977) - статус выполнения команды
#(978),#(979),#(980),#(981),#(982),#(983) - данные
МАСТЕР - сначала записывает необходимые данные, потом записывает код запроса.
Контроллер (Слейв) ожидает код запроса, обрабатывает данные, обнуляет код запроса команды
записывает данные в ячейки, записывает статус выполнения команды.
Мастер должен прочесть статус выполнения, при его наличии забрать данные, обнулить статус выполнения
       Расшифровка кодов запроса и данных
        #(976) - код запроса команды (#(ххх) адрес и допустимые значения)
0 - Нет команды Slave ничего не делает
1 - Добавить ключ(обновить) - данные #(978)-#(983)
       #(978) - пава доступа 0-63
       #(979),#(980),#(981),#(982),#(983) код карточки 0-255 в каждой ячейке
       Если код карточки совпадает а права нет – права будут обновлены для текущего номера
2 - Удалить ключ - данные #(978)-#(983)
       #(979),#(980),#(981),#(982),#(983) код карточки 0-255 в каждой ячейке
3 - Удалить все ключи
4 - Установить время - данные #(978)
       #(978) время * 0,1 сек = 0-255; 0- запрос времени
               ответ в #(978)
5 - Запрос статуса
       Ответ
       Количество ключей -
                                      #(978) 0-170
       Время -
                                      #(979) 1-255
       Блокировка кнопок -
                                      #(980) 0/1
       Блокировка считывателя -
                                      #(981) 0/1/2/3
       Блокировка двери -
                                      #(982) 0/1/2/3
       Состояние дверей -
                                      #(983) 0/1/2/3
6 - Получить ключ по номеру диапазон = (1 - количество ключей)
       запрос данные номера #(978)
       ответ
       #(978) - пава доступа 0-63
       #(979),#(980),#(981),#(982),#(983) код карточки 0-255 в каждой ячейке
7 - заблокировать/разблокировать работу кнопок на устройстве #(978)
       данные \#(978) = 1- lock 0 = \text{unlock}
8 - заблокировать считыватель #(978)
       данные #(978) 0 = unlock 1,2,3 -lock 1 - первый 2 - второй 3 - оба
9 - заблокировать дверь #(978)
       данные \#(978) = 0-unlock 1,2,3 -lock
10 - открыть дверь #(978)
       данные \#(978) = 1,2,3
11 - открыть двери до следующей команды/ события (alarm)
12 - отменить команду 11
13 - перезагрузка
14 - удалить ключ по номеру диапазон = (1 - количество ключей)
       запрос данные номера #(978)
       #(977) - статус выполнения команды = 1 - 31 команда выполнена успешно 32-64 - ошибка
Подробная расшифровка
0 - действий не производилось
1 - команда выполнена успешно
2 - ключ добавлен
3 - ключ переписан (обновлены права)
4 - ключ удален
5 - все ключи удалены
6 - время установлено / выполнено
```

- 32 не выполнено
- 33 команда не распознана
- 34 нет места
- 35 нет в базе
- 36 есть в базе
- 37 ошибка входных данных

10 ключ в 1 считывателе 20 ключ во 2 считывателе 40 ключ не опознан 80 нажата кнопка

Данные для ведения отчетов

```
Структура 8 байт - для ведения логов
#(984) - код данных
#(985) - статус выполнения
#(986),#(987),#(988),#(989),#(990),#(991) - данные

Контроллер (Slave) - записывает данные, потом код данных.
Мастер - опрашивает код, забирает данные данных, обнуляет код данных, записывает статус выполнения

#(984) - код данных расшифровка
0 - нет данных
Код события:= сумма чисел
01 открыта 1 дверь
02 открыта 2 дверь
(03 открыто обе двери)
```

#(986) - права доступа, если ключ опознан 0-63 #(987),#(988),#(989),#(990),#(991) - код карточки 0-255 в каждой ячейке , если не кнопка

Приложения

Программа контроллера

```
0000 NOERR 2
0001 GOTO 329
0002 CLR:CLOSE
0003 BEEP 15,5:PAUSE 200:BEEP 15,5:PAUSE 200:BEEP 15,5
0004 NOERR 2
0005 STOP
0006 GOTO 329
0007 §=GKEY{}:IF §=0 THEN RETURN
0008 #(975)=RDEE{1021}:IF #(975)=0 THEN RETURN
0009 BEEP 15,2
0010 \ \S=0:\S=0:\S=0:\S=0
0010 g=0.g=0.g=0
0011 g=GKEY{}:IF g<>0 THEN GOTO 11
0012 GOSUB 167
0013 CLS:LPRINT "KEY in base =",§:PAUSE 1000
0014 CLS:LPRINT "Select MODE"
0015 IF A=0 THEN AT 64:LPRINT "ADD key "
0016 IF A=1 THEN AT 64:LPRINT "DEL key "
0017 IF A=2 THEN AT 64:LPRINT "VIEW key "
0018 IF A=3 THEN AT 64:LPRINT "SEL Time open
0019 IF A=4 THEN AT 64:LPRINT "DEL ALL key
0020 IF A=5 THEN AT 64:LPRINT "Reboot
0021 IF A=6 THEN AT 64:LPRINT "EXIT
0022 §=KEY{10}:BEEP 15,2
0023 CASE §,0,123,1,25,2,27,4,29,8,25,16,27
0024 GOTO 14
0025 A=A+1:IF A>6 THEN A=0
0026 GOTO 15
0027 A=A-1:IF A<0 THEN A=6
0028 GOTO 15
0029 B=63:CASE A,0,43,1,88,2,32,3,107
0030 CASE A,4,82,6,123
0031 §^:CLR:GOTO 329:REM '***** REBOOT
0032 B=0
0033 FOR §=B TO 169
0034 #(975)=RDEE{A*6}:IF #(975)<>255 THEN Γ=ξ:EXFOR 37
0035 NEXT §
0036 AT 64:LPRINT "NO next key ":PAUSE 1000:GOTO 14
0036 AT 64:LPKINT NO HEXT KEY .FAUSE 1000.GC. G 1.
0037 Γ=B*6:RDPE *6,$(960),Γ
0038 CLS:LPRINT %3,"#KEY=",Β,"Perm=",#(960):AT 64
0039 LPRINT "KEY=",@(961),@(962),@(963),@(964),@(965)
0040 §=KEY{15}:BEEP 15,2
0040 §=KET{13}:DEEF 13,2

0041 IF §=0 THEN GOTO 123

0042 B=B+1:GOTO 33

0043 PAUSE 20:§=GKEY{}:IF §<>0 THEN GOTO 43

0044 CLS:LPRINT "ADD KEY"
0045 GOSUB 181
0046 E=#(975):IF E=255 THEN GOTO 81

0047 AT 7:LPRINT %3,"#",5," R="

0048 PAUSE 20:§=GKEY{}:IF §<>0 THEN GOTO 48

0049 AT 14:LPRINT %2,B

0050 AT 64:LPRINT "WAIT KEY"
0051 z=0
0052 z=z+1:IF z>100 THEN BEEP 15,2:GOTO 123
0053 §=GKEY{}:IF §=0 THEN GOTO 67
0054 BEEP 15,2:z=0
0055 AT 64:Γ=(B&3):LPRINT %1,"in:",Γ,"out:"
0056 Γ=(B&12)/4:LPRINT %1," A:",Γ
0057 Γ=(B&48)/16:LPRINT %1," B:",Γ
0058 Γ=KEY{10}:BEEP 15,2
0059 CASE Γ,16,61,1,63,8,65,4,14
0060 GOTO 48
0061 \Gamma=(B&3):\Gamma=\Gamma+1:\Gamma=\Gamma&3:B=B&60:B=B|\Gamma
0062 AT 14:LPRINT %2,B:GOTO 55
0063 \Gamma = (B\&12):\Gamma = \Gamma + 4:\Gamma = \Gamma\&12:B = B\&51:B = B|\Gamma
0064 AT 14:LPRINT %2,B:GOTO 55
0065 \Gamma = (B\&48):\Gamma = \Gamma + 16:\Gamma = \Gamma\&48:B = B\&15:B = B|\Gamma
0066 AT 14:LPRINT %2,B:GOTO 55
0067 #(968)=RFID{1}
0068 IF #(968)=1 THEN GOTO 72
0069 #(968)=RFID{2}
0070 IF #(968)=1 THEN GOTO 72
0071 GOTO 52
0072 GOSUB 172
0073 IF #(966)=255 THEN GOTO 76
0074 BEEP 5,8:AT 64
0075 LPRINT "THIS KEY PRESENT":PAUSE 1000:GOTO 43
0076 #(968)=B:$=5*6
0077 WRPE *6,$(968),$:BEEP 15,2
0078 AT 64:LPRINT "DONE"
0079 §=KEY{2}:BEEP 15,2:IF §>0 THEN GOTO 14
0080 GOTO 43
0081 AT 64:LPRINT "NO FREE MEMORY ":PAUSE 1000:GOTO 14
0082 CLS:LPRINT "DEL ALL KEY "
0083 AT 64:LPRINT "ARE YOU SURE ?"
0084 §=KEY{5}:BEEP 15,2:IF §<>4 THEN GOTO 14 0085 GOSUB 187
0086 AT 64:LPRINT "DONE
```

```
0087 GOTO 14
0088 CLS:LPRINT "DEL KEY"
0089 AT 64:LPRINT "WAIT KEY
0090 z=0
0091 z=z+1:IF z>100 THEN BEEP 15,2:GOTO 123
0092 #(968)=RFID{1}
0093 IF #(968)=1 THEN GOTO 98
0094 #(968)=RFID{2}
0095 IF #(968)=1 THEN GOTO 98
0096 §=GKEY{}:IF §=0 THEN GOTO 91
0097 GOTO 14
0098 BEEP 15,2:GOSUB 172
0099 IF #(966)<170 THEN GOTO 102
0100 AT 64:LPRINT "NO THIS KEY ":BEEP 5,8:PAUSE 300
0101 GOTO 14
0102 \, 5 = \#(966)
0103 #(975)=255:§=E*6
0104 WREE #(975),§
0105 AT 64:LPRINT "DONE
0106 GOTO 14
0107 CLS:LPRINT "SET OPEN DOOR"
0108 #(975)=RDEE{1020}
0109 AT 64:LPRINT .1,%3,"Time= ",#(975)," s "
0110 §=KEY{15}:BEEP 15,2
0111 CASE §,1,114,2,120,4,122,8,118,16,116
0112 AT 64:LPRINT "NO SET ":PAUSE 500
0113 GOTO 14
0114 #(975)=#(975)+1:IF #(975)>255 THEN #(975)=255
0115 GOTO 109
0116 #(975)=#(975)-1:IF #(975)<1 THEN #(975)=1
0117 GOTO 109
0118 #(975)=#(975)+10:IF #(975)>255 THEN #(975)=255
0119 GOTO 109
0120 #(975)=#(975)-10:IF #(975)<1 THEN #(975)=1
0121 GOTO 109
0122 WREE #(975),1020:GOTO 14
0123 §-:§-:§-:§-
0124 RETURN
0125 #(975)=RDEE{1022}:IF #(975)&1=0 THEN GOTO 128
0126 #(968)=RFID{1}
0127 IF #(968)=1 THEN #(968)=1:#(992)=10:GOTO 132
0128 #(975)=RDEE{1022}:IF #(975)&2=0 THEN GOTO 131
0129 #(968)=RFID{2}
0130 IF #(968)=1 THEN #(968)=2:#(992)=20:GOTO 132
0131 GOTO 166
0132 CLS:LPRINT "KEY= ",@(969),@(970),@(971),@(972)
0133 LPRINT @(973):AT 64:LPRINT "NO OPEN DOOR "
0134 #(986)=0:#(987)=#(969):#(988)=#(970)
0135 #(989)=#(971):#(990)=#(972):#(991)=#(973)
0136 GOSUB 172
0137 IF #(966)>169 THEN BEEP 5,16:GOTO 165
0138 #(986)=#(960)
0139 #(967)=#(968)&#(960)&3
0140 IF #(967)=0 THEN BEEP 5,8:GOTO 165
0141 #(967)=#(968)&((#(960)/4)&3)
0142 #(975)=#(968)&((#(960)/16)&3)
0143 IF #(967)+#(975)=0 THEN BEEP 5,8:GOTO 165
0144 #(974)=RDEE{1023}:IF #(974)&1=0 THEN GOTO 148
0145 IF #(967)=0 THEN GOTO 148
0146 PORT 9,1:PORT 5,0:#(992)=#(992)+1
0147 PORT 3,1
0148 #(974)=RDEE{1023}:IF #(974)&2=0 THEN GOTO 152
0149 IF #(975)=0 THEN GOTO 152
0150 PORT 9,1:PORT 5,0:#(992)=#(992)+2
0151 PORT 4,1
0152 #(984)=#(992)
0153 IF #(992)&3=0 THEN GOTO 162
0154 AT 64:LPRINT "OPEN DOOR
0155 #(967)=RDEE{1020}
0156 FOR §=0 TO #(967)
0157 IF A%5=0 THEN BÉEP 15,2
0158 AT 75:LPRINT %3,A
0159 PAUSE 100
0160 GOSUB 192
0161 NEXT §
0162 PORT 4,0:PORT 3,0
0163 PORT 9,0:PORT 5,1
0164 GOTO 166
0165 #(960)=0:#(984)=#(992)+40:PAUSE 300
0166 RETUŔN
0167 8=0
0168 FOR §=0 TO 169:REM ' READ DATABSE FIRST bute KEY
0169 #(975)=RDEE\{A*6\}:IF #(975)<>255 THEN B=B+1
0170 NEXT §
0171 RETURN
0172 FOR §=0 TO 169
0173 \S = A*6
0174 RDPE *6,$(960),§
0175 §=SCOMP{#(961),#(969),5}
0176 IF #(960)=255 THEN A=0
0177 IF §=1 THEN #(966)=§:EXFOR 180
0178 NEXT §
```

```
0179 #(966)=255
0180 RETURN
0181 FOR §=0 TO 169:REM ' READ DATABSE FIRST bute KEY
0182 #(975)=RDEE{A*6}:IF #(975)=255 THEN EXFOR 185
0183 NEXT §
0184 #(975)=255
0185 \# (975) = \S
0186 RÈTUŔN
0187 #(975)=255
0188 FOR §=0 TO 1019
0189 WREE #(975),A
0190 NEXT §
0191 RETURN
0192 IF #(976)=0 THEN GOTO 328
0193 CASE #(976),1,197,2,218,3,233,4,237,5,242
0194 CASE #(976),6,270,7,284,8,291,9,296,10,301
0195 CASE #(976),11,314,12,319,13,323,14,257
0196 GOTO 326
0197 FOR §=0 TO 169
0198 \delta = 4*6
0199 RDPE *6,$(960),§
0200 §=SCOMP{#(979),#(961),5}
0201 IF #(960)=255 THEN A=0
0202 IF §=1 THEN #(966)=§:EXFOR 209
0203 NEXT §
0204 GOSUB 181
0205 §=#(975):IF §=255 THEN GOTO 213
0206 §=#(975)*6:WRPE *6,$(978),§
0207 #(976)=0:#(977)=2:AT 64:LPRINT "ADD KEY OK
0208 GOTO 328
0209 IF #(978)=#(960) THEN GOTO 215
0210 §=#(966)*6:WRPE *6,$(978),§
0211 #(976)=0:#(977)=3:AT 64:LPRINT "UPDATE KEY OK "
0212 GOTO 328
0213 #(976)=0:#(977)=34:#(978)=0:AT 64
0214 LPRINT "NO FREE MEM
                                ":GOTO 328
0215 #(976)=0:#(977)=36:#(978)=0:AT 64
0216 LPRINT "THIS KEY PRESENT"
0217 GOTO 328
0218 FOR §=0 TO 169
0219 \S = A*6
0220 RDPE *6,$(960),§
0221 §=SCOMP{#(979),#(961),5}
0222 IF #(960)=255 THEN A=0
0223 IF §=1 THEN #(966)=§:EXFOR 228
0224 NEXT §
0225 #(976)=0:#(977)=35:#(978)=0:AT 64
0226 LPRINT "NO THIS KEY
0227 GOTO 328
0228 #(975)=255:§=#(966)*6
0229 WREE #(975),§
0230 #(976)=0:#(977)=4:#(978)=0:AT 64
0231 LPRINT "DEL KEY OK"
0232 GOTO 328
0233 GOSUB 187
0234 #(976)=0:#(977)=5:#(978)=0:AT 64
0235 LPRINT "DEL ALL KEY OK "
0236 GOTO 328
0237 IF #(978)=0 THEN #(978)=RDEE{1020}:GOTO 239
0238 WREE #(978),1020
0239 #(976)=0:#(977)=6:AT 64
0240 LPRINT "SET TIME OK "
0241 GOTO 328
0242 GOSUB 167
0243 \# (978) = \S
0244 #(979)=RDEE{1020}
0245 #(980)=RDEE{1021}
0246 #(980)=(!#(980))&1
0247 #(981)=RDEE{1022}
0248 #(981)=(!#(981))&3
0249 #(982)=RDEE{1023}
0250 #(982)=(!#(982))&3
0251 #(983)=0
0252 IF PORT*{3}=1 THEN #(983)=#(983)+1
0253 IF PORT*{4}=1 THEN #(983)=#(983)+2
0254 #(976)=0:#(977)=1:AT 64
0255 LPRINT "SEND STATUS OK
0256 GOTO 328
0257 IF #(978)=0 THEN GOTO 225
0258 €=0
0259 FOR §=0 TO 169:REM ' READ DATABSE FIRST bute KEY
0260 #(967)=A:REM ' сохраним адрес в базе
0261 #(975)=RDEE{A*6}:IF #(975)=255 THEN GOTO 263
0262 B=B+1:IF B=#(978) THEN §-:EXFOR 265
0263 NEXT §
0264 GOTO 225
0265 §=#(967)*6:#(975)=255
0266 WREE #(975),§
0267 #(976)=0:#(977)=1:AT 64
0268 LPRINT "DEL KEY OK "
0269 GOTO 328
0270 IF #(978)=0 THEN GOTO 225
```

```
0271 &=0
0272 FOR §=0 TO 169:REM ' READ DATABSE FIRST bute KEY
0273 #(967)=A:REM ' сохраним адрес в базе
0274 #(975)=RDEE{A*6}:IF #(975)=255 THEN GOTO 276
0275 Б=Б+1:IF Б=#(978) THEN §-:EXFOR 278
0276 NEXT §
0277 GOTO 225
0278 §=#(967)*6:RDPE *6,$(960),§
0279 #(978)=#(960):#(979)=#(961):#(980)=#(962)
0280 #(981)=#(963):#(982)=#(964):#(983)=#(965)
0281 #(976)=0:#(977)=1:AT 64
0282 LPRINT "SEND KÉY OK
0283 GOTO 328
0284 #(975)=255
0285 IF #(978)=1 THEN #(975)=0
0286 IF #(978)=0 THEN #(975)=255
0287 WREE #(975),1021
0288 #(976)=0:#(977)=1:AT 64
0289 LPRINT "LOCK KBD ON/OFF
0290 GOTO 328
0291 #(978)=(!#(978))&3
0292 WREE #(978),1022
0293 #(976)=0:#(977)=1:AT 64
0294 LPRINT "LOCK READ ON/OFF"
0295 GOTO 328
0296 #(978)=(!#(978))&3
0297 WREE #(978),1023
0298 #(976)=0:#(977)=1:AT 64
0299 LPRINT "LOCK DOOR ON/OFF"
0300 GOTO 328
0301 #(976)=0:#(977)=1
0302 IF #(978)=0 THEN GOTO 328
0303 PORT 9,1
0304 IF #(978)&1=1 THEN PORT 3,1
0305 IF #(978)&2=2 THEN PORT 4,1
0306 AT 64:LPRINT "OPEN DOOR CMD
0307 #(967)=RDEE{1020}
0308 FOR §=0 TO #(967)
0309 IF A%5=0 THEN BEEP 15,2
0310 PAUSE 100
0311 NEXT §
0312 PORT 4,0:PORT 3,0:PORT 9,0
0313 GOTO 328
0314 #(976)=0:#(977)=1
0315 PORT 3,1
0316 PORT 4,1
0317 AT 64:LPRINT "OPEN ALL DOOR "
0318 GOTO 328
0319 #(976)=0:#(977)=1
0320 PORT 4,0:PORT 3,0
0321 AT 64:LPRINT "CLOSE DOOR CMD"
0322 GOTO 328
0323 AT 64:LPRINT "REBOOT "
0324 #(976)=0:#(977)=1:PAUSE 500
0325 §^:CLR:GOTO 329:REM '***** REBOOT
0326 #(976)=0:#(977)=33:#(978)=0
0327 AT 64:LPRINT "ERROR CMD
0328 RETURN
0329 LINIT 1:BEEP 15,2
0330 LPRINT "SKD V2.0 Start "
0331 PORT 5,1:PORT 9,0
0332 GOSUB 167
0333 AT 64:LPRINT "KEY in base = ",§:PAUSE 1500:BEEP 15,2
0334 CLS:LPRINT "READY":GOTO 335
0335 GOSUB 7
0336 GOSUB 341
0337 GOSUB 125
0338 GOSUB 192
0339 GOSUB 343
0340 GOTO 335
0341 CLS:LPRINT "READY"
0342 RETURN
0343 IF PORT{10}=1 THEN GOTO 356
0344 PORT 3,1
0345 PORT 4,1
0346 PORT 9,1
0347 #(986)=0:#(987)=0:#(988)=0
0348 #(989)=0:#(990)=0:#(991)=0
0349 #(960)=0:#(984)=83
0350 #(967)=RDEE{1020}
0351 FOR §=0 TO #(967)
0352 IF A%5=0 THEN BÉEP 15,2
0353 PAUSE 100
0354 NEXT §
0355 PORT 4,0:PORT 3,0:PORT 9,0
```

0356 RETURN